11 research outputs found

    Physical Context Detection using Wearable Wireless Sensor Networks

    Get PDF
    This paper presents the architecture of a wearable sensor network and a Hidden Markov Model (HMM) processingframework for stochastic identification of body postures andphysical contexts. The key idea is to collect multi-modal sensor data from strategically placed wireless sensors over a human subject’s body segments, and to process that using HMM in order to identify the subject’s instantaneous physical context. The key contribution of the proposed multi-modal approach is a significant extension of traditional uni-modal accelerometry in which only the individual body segment movements, without their relative proximities and orientation modalities, is used for physical context identification. Through real-life experiments with body mounted sensors it is demonstrated that while the unimodal accelerometry can be used for differentiating activityintensive postures such as walking and running, they are not effective for identification and differentiation between lowactivity postures such as sitting, standing, lying down, etc. In the proposed system, three sensor modalities namely acceleration, relative proximity and orientation are used for context identification through Hidden Markov Model (HMM) based stochastic processing. Controlled experiments using human subjects are carried out for evaluating the accuracy of the HMMidentified postures compared to a naïve threshold based mechanism over different human subjects

    IoT Privacy and Security: Challenges and Solutions

    Get PDF
    Privacy and security are among the significant challenges of the Internet of Things (IoT). Improper device updates, lack of efficient and robust security protocols, user unawareness, and famous active device monitoring are among the challenges that IoT is facing. In this work, we are exploring the background of IoT systems and security measures, and identifying (a) different security and privacy issues, (b) approaches used to secure the components of IoT-based environments and systems, (c) existing security solutions, and (d) the best privacy models necessary and suitable for different layers of IoT driven applications. In this work, we proposed a new IoT layered model: generic and stretched with the privacy and security components and layers identification. The proposed cloud/edge supported IoT system is implemented and evaluated. The lower layer represented by the IoT nodes generated from the Amazon Web Service (AWS) as Virtual Machines. The middle layer (edge) implemented as a Raspberry Pi 4 hardware kit with support of the Greengrass Edge Environment in AWS. We used the cloud-enabled IoT environment in AWS to implement the top layer (the cloud). The security protocols and critical management sessions were between each of these layers to ensure the privacy of the users’ information. We implemented security certificates to allow data transfer between the layers of the proposed cloud/edge enabled IoT model. Not only is the proposed system model eliminating possible security vulnerabilities, but it also can be used along with the best security techniques to countermeasure the cybersecurity threats facing each one of the layers; cloud, edge, and IoT

    Cloud-assisted data management in wireless body area networks

    No full text
    corecore